A Tasty Taste of Tezt Tests

Romain Bardou

OUPS 2022-05-12

2019 — Testing in Tezos

Multiple frameworks:

» unit tests using Alcotest (OCaml framework)
> lots of integration tests in Pytest (Python framework)
» some integration tests in Flextesa (OCaml framework)

Being a release manager involved lots of cherry-picking from
master to release branches.

> tests would fail

» hard to find why

» even harder as | was not the author

» even harder as | barely ever used Python (wth is a fixture??)

As a Wheel Reinventor™, | decided to make my own framework.

2020 — Tezt Proof of Concept (1)

Focus on UX:

P> immediately visible helpful error messages

» in red
» at the end of logs
P copy-pastable command to reproduce

P> easy test selection from command-line

> from test tags

P> from test title

» from source file

> --list to list all tests

2020 — Tezt Proof of Concept (2)

Focus on integration tests and UX again:

>

vVvvyyVvyy

easy to launch external processes (with Lwt)

one color per process

log commands

log process stdout and stderr

log exit codes

declare temporary files for automatic cleanup (optional)

Goal: make it easy for me to debug other people’s tests.

2020 — Tezt Proof of Concept (3)

Focus on Cl integration:

> if all goes well, only log one “success” line per test
» in case of error, log lines that lead to the error
» log everything to a log file (stored as Cl artifact)

Constraint: Cl log cannot be too large.

Common theme up to now: good logs are important

2020-2022 — Improvements

» devs happy with proof of concept
> lots of tests got written
> everyday use leads to improvements

2020-2022 — Improvements — Regression Tests

P> capture output to file
» compare with previous output
> regexps to substitute non-deterministic parts

Used to test Tezos RPCs and encodings.

2020-2022 — Improvements — Auto-Balancing

store test duration in files

use those files to split tests in batches of roughly the same time
run one batch per Cl job

easily increase the number of ClI jobs

vvyyvyy

Used to reduce CI pipeline total times.

2020-2022 — Improvements — Parallel Tests

A la make -j:

» fork process for each test
» main process becomes scheduler
» scheduler limits maximum number of simultaneous forks

Provides significant speedup, both locally and in the CI.
Caveats:

» make sure network ports are not shared between tests
» make sure temporary files are not shared (this is automatic)

2020-2022 — Improvements — Remote Processes

You can spawn your processes remotely through SSH.

let runner =
Runner.create
~ssh_port: 2222
~address: "192.168.0.42"
O
in
Process.spawn ~runner "tezos-node" ["run"
|> Process.check

Example: spawn a Tezos test network on multiple machines

2022 — Testing in Octez (1)

(OCaml implementation of Tezos now called Octez)
Multiple frameworks:

» unit tests using Alcotest (OCaml framework)

» lots of integration tests in Pytest (Python framework)
» some integration tests in Flextesa (OCaml framework)
> lots of integration tests in Tezt

2022 — Testing in Octez (2)

HO\J SI'RNDRRDS PRCU
STRNT Me:ssMu [29]

(@ AlC
(47! RIDICULOUS)
WE NEED T DEVELOP
SITUATION: || ZEUERAL SRR | | STuATION:
USE CASES. vy THERE ARE
15 COMPETING

THERE ARE
4 COMPETING \)
STANDPRDS. i) STANDARDS.

Figure 1: Standards

Title text: Fortunately, the charging one has been solved now that
we've all standardized on mini-USB. Or is it micro-USB? Shit.

2022 — Testing in Octez (3)

But:

» only one Flextesa test left
» no new Python tests
» considering using Tezt for unit tests

Tezt initially marketed as integration test framework.

But has all features we need from Alcotest and more.

A Tasty Taste of Tezt (1) — Basic Unit Test

let O =
Test.register
~__FILE__
~title: "basic test"
~tags: ["basic"]
@@ fun () ->
Log.info "hello I'm a test";
if 1 = 2 then Test.fail "universe exploded, sorry";
unit

let () = Test.run ()

In dune:

(test

(name main)

(libraries tezt)

(flags (:standard -open Tezt -open Tezt.Base)))

A Tasty Taste of Tezt (2) — Running Tests

Run test:

dune runtest
dune exec main.exe

Tip:

alias tezt='dune exec main.exe --'

Get list of registered tests (files, titles and tags):
tezt —--list

Run only our basic test:

tezt basic
tezt --title 'basic test'

A Tasty Taste of Tezt (3) — Basic Integration Test

let O =
Test.register
~__FILE__
~title: "basic integration test"
~tags: ["basic"; "integration"]
@ fun () ->

Process.run "git" ["--help"]
You can also:

» read stdout (Process.run_and_read_stdout)
» read stderr (Process.run_and_read_stderr)
» not wait for process to exit (Process.spawn)
> then check exit code is 0 (Process.check)
» or check for errors (Process.check_error)
» or just read the exit code (Process.wait)
>

and the output (Process.stdout, Process.stderr)
P> as Lwt_io.input_channel

A Tasty Taste of Tezt (3) — Basic Regression Test

let () =
Regression.register
~__FILE__
~title: "basic regression test"
~tags: ["basic"]
~output_file: "regression"

@ fun () ->
Regression.capture "some constant string";
Process.run "git" ["--help"]

~hooks: Regression.hooks
Initialize output file with:
tezt --reset-regressions regression

(tag regression is automatically added by
Regression.register)

A Tasty Taste of Tezt (4) — Successful Output

$ dune exec main.exe

[09:41:40.582] [SUCCESS] (1/3) basic unit test
[09:41:40.583] [SUCCESS] (2/3) basic integration test
[09:41:40.585] [SUCCESS] (3/3) basic regression test

A Tasty Taste of Tezt (5) — Failed Output

$ dune exec main.exe

[09:44:20.166] Starting test: basic unit test
[09:44:20.166] hello I'm a test

[09:44:20.166] [error] universe exploded, sorry
[09:44:20.166] [FAILURE] (1/3, 1 failed) basic unit test
[09:44:20.166] Try again with: main.exe --verbose

--file main.ml --title 'basic unit test'

A Tasty Taste of Tezt (6) — List

$ dune exec main.exe -- --list
Fm———————— e
| FILE | TITLE
Fm———————— e

| main.ml | basic unit test
| main.ml | basic integration test
| main.ml | basic regression test

____________________ +
TAGS |
____________________ +
basic, unit |
basic, integration |
regression, basic |
____________________ +

A Tasty Taste of Tezt (7) — Select

$ dune exec main.exe -- --file main.ml /regression
[09:42:57.576] [SUCCESS] (1/2) basic unit test
[09:42:57.577] [SUCCESS] (2/2) basic integration test

A Tasty Taste of Tezt (8) — Auto-Balancing

$ dune exec main.exe -- --list --job 1/2

Fomm e ettt S o +
| FILE | TITLE | TAGS |
o e e +
| main.ml | basic unit test | basic, unit

| main.ml | basic integration test | basic, integration |
pommmm e ettt e o +
$ dune exec main.exe -- --list --job 2/2

Fommmm et e +

| FILE | TITLE | TAGS I
pommmm et e i e +

| main.ml | basic regression test | regression, basic |
Fomm e e e e +

Tezt — Other Features

A JSON module to easily parse JSON:

let* rpc_response = ... in
let json =
JSON.parse ~origin: "RPC response" rpc_response
in
let name =
JSON. (json |-> "name" |-> "firstname" |> as_string)

in

Tezt — A General Testing Framework

Tezt supports:

P unit tests
P integration tests
P regression tests

Using the same framework for everything is nice:

> same UX
» only one lib to learn
> less dependencies

Try it!

opam install tezt

