
A Tasty Taste of Tezt Tests

Romain Bardou

OUPS 2022-05-12

2019 — Testing in Tezos

Multiple frameworks:
I unit tests using Alcotest (OCaml framework)
I lots of integration tests in Pytest (Python framework)
I some integration tests in Flextesa (OCaml framework)

Being a release manager involved lots of cherry-picking from
master to release branches.
I tests would fail
I hard to find why
I even harder as I was not the author
I even harder as I barely ever used Python (wth is a fixture??)

As a Wheel Reinventor™, I decided to make my own framework.

2020 — Tezt Proof of Concept (1)

Focus on UX:
I immediately visible helpful error messages

I in red
I at the end of logs
I copy-pastable command to reproduce

I easy test selection from command-line
I from test tags
I from test title
I from source file
I --list to list all tests

2020 — Tezt Proof of Concept (2)

Focus on integration tests and UX again:
I easy to launch external processes (with Lwt)
I one color per process
I log commands
I log process stdout and stderr
I log exit codes
I declare temporary files for automatic cleanup (optional)

Goal: make it easy for me to debug other people’s tests.

2020 — Tezt Proof of Concept (3)

Focus on CI integration:
I if all goes well, only log one “success” line per test
I in case of error, log lines that lead to the error
I log everything to a log file (stored as CI artifact)

Constraint: CI log cannot be too large.

Common theme up to now: good logs are important

2020-2022 — Improvements

I devs happy with proof of concept
I lots of tests got written
I everyday use leads to improvements

2020-2022 — Improvements — Regression Tests

I capture output to file
I compare with previous output
I regexps to substitute non-deterministic parts

Used to test Tezos RPCs and encodings.

2020-2022 — Improvements — Auto-Balancing

I store test duration in files
I use those files to split tests in batches of roughly the same time
I run one batch per CI job
I easily increase the number of CI jobs

Used to reduce CI pipeline total times.

2020-2022 — Improvements — Parallel Tests

A la make -j:
I fork process for each test
I main process becomes scheduler
I scheduler limits maximum number of simultaneous forks

Provides significant speedup, both locally and in the CI.

Caveats:
I make sure network ports are not shared between tests
I make sure temporary files are not shared (this is automatic)

2020-2022 — Improvements — Remote Processes

You can spawn your processes remotely through SSH.

let runner =
Runner.create

~ssh_port: 2222
~address: "192.168.0.42"
()

in
Process.spawn ~runner "tezos-node" ["run"]
|> Process.check

Example: spawn a Tezos test network on multiple machines

2022 — Testing in Octez (1)

(OCaml implementation of Tezos now called Octez)

Multiple frameworks:
I unit tests using Alcotest (OCaml framework)
I lots of integration tests in Pytest (Python framework)
I some integration tests in Flextesa (OCaml framework)
I lots of integration tests in Tezt

2022 — Testing in Octez (2)

Figure 1: Standards

Title text: Fortunately, the charging one has been solved now that
we’ve all standardized on mini-USB. Or is it micro-USB? Shit.

2022 — Testing in Octez (3)

But:
I only one Flextesa test left
I no new Python tests
I considering using Tezt for unit tests

Tezt initially marketed as integration test framework.

But has all features we need from Alcotest and more.

A Tasty Taste of Tezt (1) — Basic Unit Test
let () =

Test.register
~__FILE__
~title: "basic test"
~tags: ["basic"]

@@ fun () ->
Log.info "hello I'm a test";
if 1 = 2 then Test.fail "universe exploded, sorry";
unit

let () = Test.run ()

In dune:

(test
(name main)
(libraries tezt)
(flags (:standard -open Tezt -open Tezt.Base)))

A Tasty Taste of Tezt (2) — Running Tests

Run test:

dune runtest
dune exec main.exe

Tip:

alias tezt='dune exec main.exe --'

Get list of registered tests (files, titles and tags):

tezt --list

Run only our basic test:

tezt basic
tezt --title 'basic test'

A Tasty Taste of Tezt (3) — Basic Integration Test
let () =

Test.register
~__FILE__
~title: "basic integration test"
~tags: ["basic"; "integration"]

@@ fun () ->
Process.run "git" ["--help"]

You can also:
I read stdout (Process.run_and_read_stdout)
I read stderr (Process.run_and_read_stderr)
I not wait for process to exit (Process.spawn)

I then check exit code is 0 (Process.check)
I or check for errors (Process.check_error)
I or just read the exit code (Process.wait)
I and the output (Process.stdout, Process.stderr)

I as Lwt_io.input_channel

A Tasty Taste of Tezt (3) — Basic Regression Test

let () =
Regression.register

~__FILE__
~title: "basic regression test"
~tags: ["basic"]
~output_file: "regression"

@@ fun () ->
Regression.capture "some constant string";
Process.run "git" ["--help"]

~hooks: Regression.hooks

Initialize output file with:

tezt --reset-regressions regression

(tag regression is automatically added by
Regression.register)

A Tasty Taste of Tezt (4) — Successful Output

$ dune exec main.exe
[09:41:40.582] [SUCCESS] (1/3) basic unit test
[09:41:40.583] [SUCCESS] (2/3) basic integration test
[09:41:40.585] [SUCCESS] (3/3) basic regression test

A Tasty Taste of Tezt (5) — Failed Output

$ dune exec main.exe
[09:44:20.166] Starting test: basic unit test
[09:44:20.166] hello I'm a test
[09:44:20.166] [error] universe exploded, sorry
[09:44:20.166] [FAILURE] (1/3, 1 failed) basic unit test
[09:44:20.166] Try again with: main.exe --verbose
--file main.ml --title 'basic unit test'

A Tasty Taste of Tezt (6) — List

$ dune exec main.exe -- --list
+---------+------------------------+--------------------+
| FILE | TITLE | TAGS |
+---------+------------------------+--------------------+
main.ml	basic unit test	basic, unit
main.ml	basic integration test	basic, integration
main.ml	basic regression test	regression, basic
+---------+------------------------+--------------------+

A Tasty Taste of Tezt (7) — Select

$ dune exec main.exe -- --file main.ml /regression
[09:42:57.576] [SUCCESS] (1/2) basic unit test
[09:42:57.577] [SUCCESS] (2/2) basic integration test

A Tasty Taste of Tezt (8) — Auto-Balancing

$ dune exec main.exe -- --list --job 1/2
+---------+------------------------+--------------------+
| FILE | TITLE | TAGS |
+---------+------------------------+--------------------+
| main.ml | basic unit test | basic, unit |
| main.ml | basic integration test | basic, integration |
+---------+------------------------+--------------------+
$ dune exec main.exe -- --list --job 2/2
+---------+-----------------------+-------------------+
| FILE | TITLE | TAGS |
+---------+-----------------------+-------------------+
| main.ml | basic regression test | regression, basic |
+---------+-----------------------+-------------------+

Tezt — Other Features

A JSON module to easily parse JSON:

let* rpc_response = ... in
let json =

JSON.parse ~origin: "RPC response" rpc_response
in
let name =

JSON.(json |-> "name" |-> "firstname" |> as_string)
in

Tezt — A General Testing Framework

Tezt supports:
I unit tests
I integration tests
I regression tests

Using the same framework for everything is nice:
I same UX
I only one lib to learn
I less dependencies

Try it!

opam install tezt

