OCaml Users in PariS:

Epidemiological inference in OCaml

Benjamin Nguyen-Van-Yen

March 10, 2022

1/17

e | work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

2/17

e | work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

e | did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

2/17

e | work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

e | did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

e And | decided to do it in OCaml...

2/17

Some of the things | did during my PhD

® Simulations of SIR-like ODE models

3/17

Some of the things | did during my PhD

® Simulations of SIR-like ODE models
® Simulations of SIR-like stochastic models

3/17

Some of the things | did during my PhD

® Simulations of SIR-like ODE models
® Simulations of SIR-like stochastic models

® Simulation of sequence evolution in a SIR-like model

3/17

Some of the things | did during my PhD

Simulations of SIR-like ODE models
Simulations of SIR-like stochastic models

Simulation of sequence evolution in a SIR-like model
* Inference by MCMC

3/17

Some of the things | did during my PhD

Simulations of SIR-like ODE models
Simulations of SIR-like stochastic models

Simulation of sequence evolution in a SIR-like model
* Inference by MCMC
® Inference by MCMC for stochastic models

3/17

Some of the things | did during my PhD

Simulations of SIR-like ODE models

Simulations of SIR-like stochastic models

Simulation of sequence evolution in a SIR-like model
* Inference by MCMC

® Inference by MCMC for stochastic models
Phylodynamic inference by MCMC

3/17

Some of the things | did during my PhD

Simulations of SIR-like ODE models

3000

v 2000

< 1000 -
BE1
@ 750

<’ — 500+
®

T T T T
0.000 0.025 0.050 0.075
t

4/17

Some of the things | did during my PhD

Simulations of SIR-like stochastic models

200 —

100

0.0 0.1 0.2

5/17

Some of the things | did during my PhD

Simulation of sequence evolution in a SIR-like model

a

6/17

Some of the things | did during my PhD

Simulation of sequence evolution in a SIR-like model

6/17

Some of the things | did during my PhD

Inference by MCMC

750 o

500 o

250 4

100000 4

& 50000

10

7/17

Some of the things | did during my PhD

Inference by MCMC

750
« 500
250
Cases
< 300
9 200
100000 ®
© 100
=
& 50000 0 T T
0.0 0.5 1.0
T T T T t
10
S
=

)r
X
=
=

7/17

Some of the things | did during my PhD

Inference by MCMC

800 109
0.8
600
0.6
400 4

0.4

200 4 024
01— 00— §
124 Q
]

100000 104

80000 4 s

= 60000 6

55

40000 o 14

20000 o]

0 0

T T
Cases Cases
Source Source

300

[\
(e
o

—
o
(=)

0.0

Cases

0.5 1.0

7/17

Some of the things | did during my PhD

Inference by MCMC for stochastic models

120
100
80
0
3 60 Method
S — PRM
40 —— ODE
20
o

T T T T T
2013.8 2013.9 2014.0 2014.1 2014.2
t

8/17

Some of the things | did during my PhD

Phylodynamic inference by MCMC

3500

3000 4

2500

2000 o

cases

1500 —

- S SV

T T T T T T T
2003 2004 2005 2006 2007 2008 2009
t

M il

60

Target
40

branch length

20

0

20
40
60
80

100

120

140

160

9/17

Some of the things | did during my PhD

Phylodynamic inference by MCMC

Sequences Cases Both
10000

7500
5000

cases

2500

T T T T T
2004 2006 2008 2004 2006 2008 2004 2006 2008
t

9/17

The problem

A range of models, of simulation algorithms, and of inference
algorithms.

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : observations -> params

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : rng -> observations -> params list

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : rng -> observations -> params list

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

A few examples

Poisson Random measures

infection events X point
u
x
x
x x
X
« X | N ~Poisson(volume)
; x x
X X
3
X
X < X ”
x x
X X
A recovery events t
u
x
X
x * X
X
X X
x X
x X
x o X
x
X x x
x
I infectious population
6
5
4
3
2
1
time t

11/17

A few examples

Poisson Random measures

infection events X point
u —— infection rate
x 351

A recovery events t
m — recovery rate

I infectious population
— 1

6

5

4

3

2

14

time t

11/17

A few examples

Poisson Random measures

vo ~ PRM(1)

= Poisson(V)
. 0o ~ po

Initialize

. Accept or Reject
Opp1 =0 or6,
Propose Va1 = or vy
/erase 0" ~ qo(.|0)
V'~ g (o) Iterate
Likelihood
L((X])|D)

\ redraw
D Simulate

Ly (X0) = £(0',v)
Poisson(V) .

11/17

A few examples

Ecology-evolution dynamics: populations of individuals with traits

type id = ["Id]
type nonid = [“Nonid]

type 'a isid =
| Isid of ('a, id) eq

| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group
val isid : 'a group -> 'a isid
val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end

12/17

A few examples

Ecology-evolution dynamics: populations of individuals with traits

type id = ["Id]
type nonid = [“Nonid]

type 'a isid =
| Isid of ('a, id) eq

| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group
val isid : 'a group -> 'a isid
val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end

val count : 'a group -> t -> int
val choose : rng -> 'a group -> t -> 'a indiv

12/17

A few examples

SIR-like models

type idor
type 'a payload

type _ t =
| S : nonid t
| E : idor payload -> idor t
| I : idor payload -> idor t
| R : nonid t
| C : nonid t
| 0 : idor payload -> idor t

type _ group =
| Sus : nonid group
| Exp : idor group
| Inf : idor group
| Rem : nonid group
| Cas : nonid group
| Out : idor group

13/17

A few examples

SIR-like models

type idor

1l
type 'a payload module Make (Get : GET) = struct

type t = Get.t

type _ t =
| 8 : nonid ¢ let leave_exposed par _ z =
| E : idor payload -> idor t -5*p par -
. . let e = Get.exp z in
| T : idor payload -> idor t F.Pos.0p. ((Param. sigma par) * o)
| R : nonid t -+08-Lp- -sigma p
| € : nonid ¢ let recover ar z =
| 0 : idor payload -> idor t y par -

let i = Get.inf z in
type _ group = F.Pos.0Op. ((Param.nu par) * i)
| Sus : nonid group
Exp : idor group
Inf : idor group

| let immunity_loss par _ z =
|
| Rem : nonid group
|
|

let r = Get.rem z in
F.Pos.0Op. ((Param.gamma par) * r)

Cas : nonid group

Out : idor group en&

13/17

A few examples

Inference across simulation methods

type continuous_pop = ...
type discrete_pop =

type ode_sim
type sde_sim .
type exact_sim = ...
type approx_sim = ...
type fast_sim = ...

14/17

A few examples

Inference across simulation methods

type _ pop =
| Continuous : continuous_pop pop
| Discrete : discrete_pop pop

type _ prm_sim_mode =
type continuous_pop = ... | Exact : exact_sim prm_sim_mode
type discrete_pop = | Approx : approx_sim prm_sim_mode
| Fast : fast_sim prm_sim_mode

type ode_sim
type sde_sim

type _ sim_mode =

type exact_sim = ... | Ode : ode_sim sim_mode
type approx_sim = ... | Sde : sde_sim sim_mode
type fast_sim = ... | Prm : 'a prm_sim_mode -> 'a sim_mode

type ('pop, 'sim) settings =
| Ode : (continuous_pop, unit) settings
| Sde : (continuous_pop, Sim.Dbt.t) settings
| Prm : 'a prm_sim_mode -> (discrete_pop, 'a)

14/17

Conclusion: OCaml for scientific programming

® Great language !

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

® Limited ecosystem.

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

® Limited ecosystem.
| used: Lacaml, odepack

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

® Limited ecosystem.
| used: Lacaml, odepack
There is also: owl, biocaml

15/17

Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

® Limited ecosystem.
| used: Lacaml, odepack
There is also: owl, biocaml

e Limited scientific impact.

15/17

Notes de conclusion

16/17

Thank you !

17/17

