
OCaml Users in PariS:
Epidemiological inference in OCaml

Benjamin Nguyen-Van-Yen

March 10, 2022

1/17

Who am I ?

• I work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

• I did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

• And I decided to do it in OCaml...

2/17

Who am I ?

• I work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

• I did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

• And I decided to do it in OCaml...

2/17

Who am I ?

• I work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

• I did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

• And I decided to do it in OCaml...

2/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models

• Simulations of SIR-like stochastic models
• Simulation of sequence evolution in a SIR-like model
• Inference by MCMC
• Inference by MCMC for stochastic models
• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models
• Simulations of SIR-like stochastic models

• Simulation of sequence evolution in a SIR-like model
• Inference by MCMC
• Inference by MCMC for stochastic models
• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models
• Simulations of SIR-like stochastic models
• Simulation of sequence evolution in a SIR-like model

• Inference by MCMC
• Inference by MCMC for stochastic models
• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models
• Simulations of SIR-like stochastic models
• Simulation of sequence evolution in a SIR-like model
• Inference by MCMC

• Inference by MCMC for stochastic models
• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models
• Simulations of SIR-like stochastic models
• Simulation of sequence evolution in a SIR-like model
• Inference by MCMC
• Inference by MCMC for stochastic models

• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD

• Simulations of SIR-like ODE models
• Simulations of SIR-like stochastic models
• Simulation of sequence evolution in a SIR-like model
• Inference by MCMC
• Inference by MCMC for stochastic models
• Phylodynamic inference by MCMC

3/17

Some of the things I did during my PhD
Simulations of SIR-like ODE models

4/17

Some of the things I did during my PhD
Simulations of SIR-like stochastic models

5/17

Some of the things I did during my PhD
Simulation of sequence evolution in a SIR-like model

6/17

Some of the things I did during my PhD
Simulation of sequence evolution in a SIR-like model

6/17

Some of the things I did during my PhD
Inference by MCMC

7/17

Some of the things I did during my PhD
Inference by MCMC

7/17

Some of the things I did during my PhD
Inference by MCMC

7/17

Some of the things I did during my PhD
Inference by MCMC for stochastic models

8/17

Some of the things I did during my PhD
Phylodynamic inference by MCMC

9/17

Some of the things I did during my PhD
Phylodynamic inference by MCMC

9/17

The problem

A range of models, of simulation algorithms, and of inference
algorithms.

type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : observations -> params

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : rng -> observations -> params list

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

The problem

A range of models, of simulation algorithms, and of inference
algorithms.
type params type model type traj

val model : params -> model
val simulate : model -> traj

type observations

val infer : rng -> observations -> params list

https://gitlab.com/bnguyenvanyen/ocamlecoevo

10/17

https://gitlab.com/bnguyenvanyen/ocamlecoevo

A few examples
Poisson Random measures

11/17

A few examples
Poisson Random measures

11/17

A few examples
Poisson Random measures

11/17

A few examples
Ecology-evolution dynamics: populations of individuals with traits

type id = [`Id]
type nonid = [`Nonid]

type 'a isid =
| Isid of ('a, id) eq
| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group

val isid : 'a group -> 'a isid

val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end

val count : 'a group -> t -> int
val choose : rng -> 'a group -> t -> 'a indiv

12/17

A few examples
Ecology-evolution dynamics: populations of individuals with traits

type id = [`Id]
type nonid = [`Nonid]

type 'a isid =
| Isid of ('a, id) eq
| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group

val isid : 'a group -> 'a isid

val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end

val count : 'a group -> t -> int
val choose : rng -> 'a group -> t -> 'a indiv

12/17

A few examples
SIR-like models

type idor
type 'a payload

type _ t =
| S : nonid t
| E : idor payload -> idor t
| I : idor payload -> idor t
| R : nonid t
| C : nonid t
| O : idor payload -> idor t

type _ group =
| Sus : nonid group
| Exp : idor group
| Inf : idor group
| Rem : nonid group
| Cas : nonid group
| Out : idor group

...

module Make (Get : GET) = struct
type t = Get.t

let leave_exposed par _ z =
let e = Get.exp z in
F.Pos.Op.((Param.sigma par) * e)

let recovery par _ z =
let i = Get.inf z in
F.Pos.Op.((Param.nu par) * i)

let immunity_loss par _ z =
let r = Get.rem z in
F.Pos.Op.((Param.gamma par) * r)

...
end

13/17

A few examples
SIR-like models

type idor
type 'a payload

type _ t =
| S : nonid t
| E : idor payload -> idor t
| I : idor payload -> idor t
| R : nonid t
| C : nonid t
| O : idor payload -> idor t

type _ group =
| Sus : nonid group
| Exp : idor group
| Inf : idor group
| Rem : nonid group
| Cas : nonid group
| Out : idor group

...

module Make (Get : GET) = struct
type t = Get.t

let leave_exposed par _ z =
let e = Get.exp z in
F.Pos.Op.((Param.sigma par) * e)

let recovery par _ z =
let i = Get.inf z in
F.Pos.Op.((Param.nu par) * i)

let immunity_loss par _ z =
let r = Get.rem z in
F.Pos.Op.((Param.gamma par) * r)

...
end

13/17

A few examples
Inference across simulation methods

type continuous_pop = ...
type discrete_pop = ...

type ode_sim = ...
type sde_sim = ...
type exact_sim = ...
type approx_sim = ...
type fast_sim = ...

type _ pop =
| Continuous : continuous_pop pop
| Discrete : discrete_pop pop

type _ prm_sim_mode =
| Exact : exact_sim prm_sim_mode
| Approx : approx_sim prm_sim_mode
| Fast : fast_sim prm_sim_mode

type _ sim_mode =
| Ode : ode_sim sim_mode
| Sde : sde_sim sim_mode
| Prm : 'a prm_sim_mode -> 'a sim_mode

type ('pop, 'sim) settings =
| Ode : (continuous_pop, unit) settings
| Sde : (continuous_pop, Sim.Dbt.t) settings
| Prm : 'a prm_sim_mode -> (discrete_pop, 'a) settings

14/17

A few examples
Inference across simulation methods

type continuous_pop = ...
type discrete_pop = ...

type ode_sim = ...
type sde_sim = ...
type exact_sim = ...
type approx_sim = ...
type fast_sim = ...

type _ pop =
| Continuous : continuous_pop pop
| Discrete : discrete_pop pop

type _ prm_sim_mode =
| Exact : exact_sim prm_sim_mode
| Approx : approx_sim prm_sim_mode
| Fast : fast_sim prm_sim_mode

type _ sim_mode =
| Ode : ode_sim sim_mode
| Sde : sde_sim sim_mode
| Prm : 'a prm_sim_mode -> 'a sim_mode

type ('pop, 'sim) settings =
| Ode : (continuous_pop, unit) settings
| Sde : (continuous_pop, Sim.Dbt.t) settings
| Prm : 'a prm_sim_mode -> (discrete_pop, 'a) settings

14/17

Conclusion: OCaml for scientific programming

• Great language !

Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.

I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.

Multiple refactorings have been done without too much pain.
• Limited ecosystem.

I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.

I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.

I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.
I used: Lacaml, odepack

There is also: owl, biocaml
• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.
I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Conclusion: OCaml for scientific programming

• Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

• Limited ecosystem.
I used: Lacaml, odepack
There is also: owl, biocaml

• Limited scientific impact.

15/17

Notes de conclusion

16/17

Thank you !

17/17

