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e | work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).
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e | work in the SED of INRIA Saclay for the Tropical team, on
the organization of emergency call centers (15/17/18/112).

e | did a PhD at Institut Pasteur and ENS about Bayesian
inference of infectious disease dynamics.

e And | decided to do it in OCaml...
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Some of the things | did during my PhD

® Simulations of SIR-like ODE models
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Some of the things | did during my PhD

Simulations of SIR-like ODE models

Simulations of SIR-like stochastic models

Simulation of sequence evolution in a SIR-like model
* Inference by MCMC

® Inference by MCMC for stochastic models
Phylodynamic inference by MCMC
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Some of the things | did during my PhD

Simulations of SIR-like ODE models
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Some of the things | did during my PhD

Simulations of SIR-like stochastic models
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Some of the things | did during my PhD

Simulation of sequence evolution in a SIR-like model
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Some of the things | did during my PhD

Simulation of sequence evolution in a SIR-like model
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Some of the things | did during my PhD

Inference by MCMC
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Inference by MCMC
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Some of the things | did during my PhD

Inference by MCMC
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Some of the things | did during my PhD

Inference by MCMC for stochastic models
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Some of the things | did during my PhD

Phylodynamic inference by MCMC
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Some of the things | did during my PhD

Phylodynamic inference by MCMC
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The problem

A range of models, of simulation algorithms, and of inference
algorithms.
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A few examples

Poisson Random measures
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A few examples

Poisson Random measures

vo ~ PRM(1)

= Poisson(V)
. 0o ~ po

Initialize

. Accept or Reject
Opp1 =0 or6,
Propose Va1 = or vy
/erase 0" ~ qo(.|0)
V'~ g (o) Iterate
Likelihood
L((X])|D)

\ redraw
D Simulate

Ly (X0) = £(0',v)
Poisson(V) .
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A few examples

Ecology-evolution dynamics: populations of individuals with traits

type id = [ "Id ]
type nonid = [ “Nonid ]

type 'a isid =
| Isid of ('a, id) eq

| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group
val isid : 'a group -> 'a isid
val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end
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Ecology-evolution dynamics: populations of individuals with traits

type id = [ "Id ]
type nonid = [ “Nonid ]

type 'a isid =
| Isid of ('a, id) eq

| Isnotid of ('a, nonid) eq

module type TRAIT = sig
type 'a t

type 'a group
val isid : 'a group -> 'a isid
val group_of : 'a t -> 'a group

val of_group : nonid group -> nonid t
end

val count : 'a group -> t -> int
val choose : rng -> 'a group -> t -> 'a indiv
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A few examples

SIR-like models

type idor
type 'a payload

type _ t =
| S : nonid t
| E : idor payload -> idor t
| I : idor payload -> idor t
| R : nonid t
| C : nonid t
| 0 : idor payload -> idor t

type _ group =
| Sus : nonid group
| Exp : idor group
| Inf : idor group
| Rem : nonid group
| Cas : nonid group
| Out : idor group
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A few examples

SIR-like models

type idor

1l
type 'a payload module Make (Get : GET) = struct

type t = Get.t

type _ t =
| 8 : nonid ¢ let leave_exposed par _ z =
| E : idor payload -> idor t -5*p par -
. . let e = Get.exp z in
| T : idor payload -> idor t F.Pos.0p. ( (Param. sigma par) * o)
| R : nonid t -+08-Lp- -sigma p
| € : nonid ¢ let recover ar z =
| 0 : idor payload -> idor t y par -

let i = Get.inf z in
type _ group = F.Pos.0Op. ((Param.nu par) * i)
| Sus : nonid group
Exp : idor group
Inf : idor group

| let immunity_loss par _ z =
|
| Rem : nonid group
|
|

let r = Get.rem z in
F.Pos.0Op. ((Param.gamma par) * r)

Cas : nonid group

Out : idor group en&
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A few examples

Inference across simulation methods

type continuous_pop = ...
type discrete_pop =

type ode_sim
type sde_sim .
type exact_sim = ...
type approx_sim = ...
type fast_sim = ...
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A few examples

Inference across simulation methods

type _ pop =
| Continuous : continuous_pop pop
| Discrete : discrete_pop pop

type _ prm_sim_mode =
type continuous_pop = ... | Exact : exact_sim prm_sim_mode
type discrete_pop = | Approx : approx_sim prm_sim_mode
| Fast : fast_sim prm_sim_mode

type ode_sim
type sde_sim

type _ sim_mode =

type exact_sim = ... | Ode : ode_sim sim_mode
type approx_sim = ... | Sde : sde_sim sim_mode
type fast_sim = ... | Prm : 'a prm_sim_mode -> 'a sim_mode

type ('pop, 'sim) settings =
| Ode : (continuous_pop, unit) settings
| Sde : (continuous_pop, Sim.Dbt.t) settings
| Prm : 'a prm_sim_mode -> (discrete_pop, 'a)
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Conclusion: OCaml for scientific programming

® Great language !
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Conclusion: OCaml for scientific programming

® Great language !
Rare difficult bugs mostly due to mutability or tricky
algorithms.
Multiple refactorings have been done without too much pain.

® Limited ecosystem.
| used: Lacaml, odepack
There is also: owl, biocaml

e Limited scientific impact.
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Notes de conclusion
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Thank you !
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